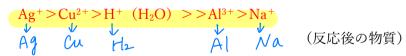

電気分解

*電池と電気分解との違い

電池・・・自発的に酸化還元反応が起こる


電気分解・・・外部から電気を流して強制的に酸化還元反応を起こす

陰極の反応

電子 e⁻が入ってくる (⊖が入ってくる)

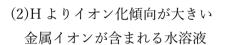
- →⊕が受け取りやすい (=受け取って単体になる)
- →イオン化傾向の小さい金属が反応しやすい

反応しやすさ (よく出てくるもの)

陽極の反応

電子 e⁻が出ていく(⊖が余っている)

→⊖が反応しやすい

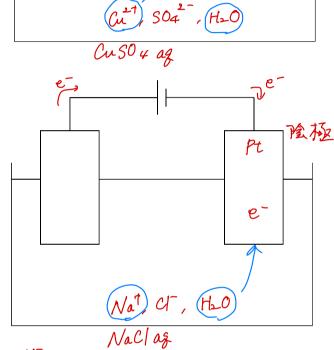

反応しやすさ

*陽極の場合、極板にイオン化傾向が Ag 以上の金属を用いると溶けだして電子 e-を出す

陰極の反応

- (1)Hよりイオン化傾向が小さい 金属イオンが含まれる水溶液
- (例)CuSO₄水溶液(極板に Pt)

陰極: $Cu^{\dagger} + 2e^{-} \rightarrow Cu$ 還元 \overline{ph}

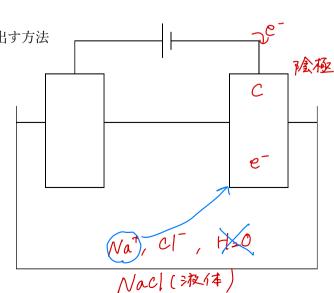


(例)NaCl 水溶液 (極板に Pt)

陰極:2H⁺ +2e⁻ → H₂ 両辺に2OH⁻を加える 2H₂O + 2e⁻ → H₂+2OH⁻

(酸性水溶液) 2H + 2e → H2

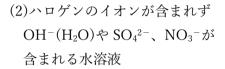
(中·塩基性水溶液) 2H₂O +2e⁻→ H₂ + 20H⁻


Pt

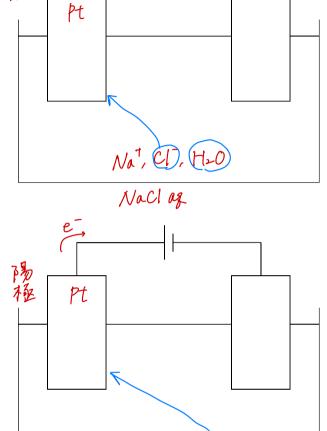
(3)溶融塩電解(別名:融解塩電解)

H よりイオン化傾向が大きい金属を取り出す方法

(例)NaCl(液体)(極板に C)


陰極: Nat + e → Na

陽極の反応


- (1)ハロゲンのイオンが含まれる水溶液
- (例)NaCl 水溶液 (極板に Pt)

陽極: 201 → 0/2 + 20 西後化 反心"

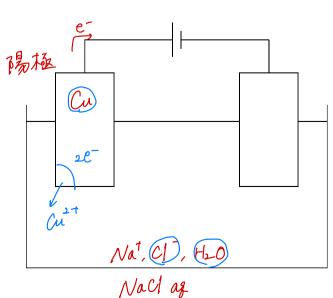
(例)CuSO₄水溶液(極板に Pt)

(酸、中性水溶液) 2H2O → O2+4H+4e-

Cut, 50 / H2D

Cu SO4 ag

正极


陽極

(塩基性水溶液) 40H → 0+ 2H20 + 4e-

(3)極板に Pt や C 以外のとき

(例)NaCl 水溶液(極板に Cu)

陽極: Cu → Cu +2 e-

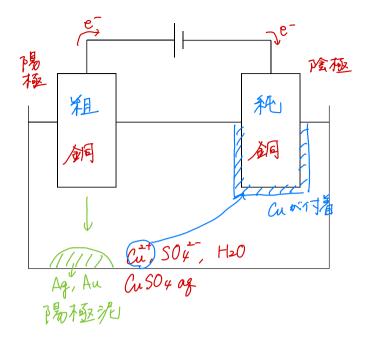
銅の電解精錬

*製錬とは

鉱石から金属を取り出す工程

*精錬とは

不純物の多い金属から純度の高い


金属を取り出す工程

→製錬によって取り出した金属は純 度が低いことが多いので、純度を 高めるために精錬を行う

水溶液:CuSO₄水溶液

陰極 : <mark>純銅</mark> 陽極 : 粗銅

*今回の粗銅はCuにAu、Ag、Ni、Znが含まれている場合を考える

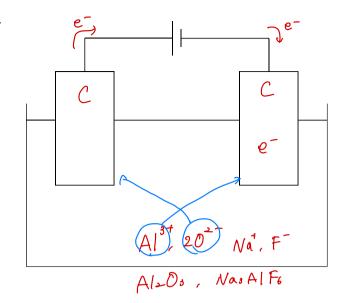
イオン化傾向の小さな金属 Ag、Au はイオンでなく単体として、沈殿する \rightarrow 陽極泥という

アルミニウムの電解精錬

ホール・エルー法

極板に炭素棒、溶液は氷晶石の液体に アルミナを溶かしたもの

アルミニウムの原料


ボーキサイト($Al_2O_3 \cdot nH_2O$)

↓不純物を取り除く

アルミナ(酸化アルミニウム Al₂O₃)

↓電解精錬

アルミニウム Al を取り出す

水溶液中では H+よりイオン化傾向が 大きい Al を取り出すことができない

 \downarrow

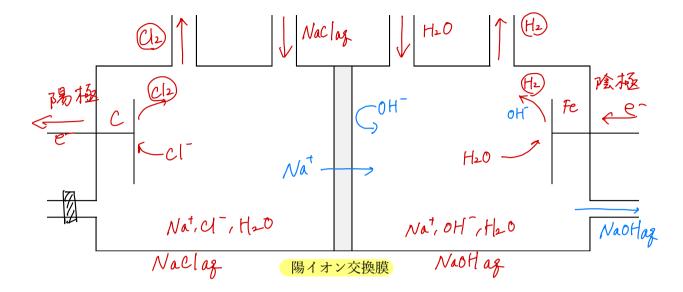
アルミナ Al₂O₃を液体状態にして電気分解をする

【工夫した】

アルミナの融点 m.p.が約 2000°C → 液体状態にするのが困難

- → <mark>氷晶石</mark> Na₃AlF₆ (m.p.約 1000°C) をどろどろに溶かす
- →この氷晶石(液体)にアルミナを溶かす
- →アルミナ Al₂O₃ のみが電気分解される

陰極: A (3° → A (


陽極:
$$\begin{pmatrix} 2 & 0^{2^{-}} & \rightarrow & 0_{2} + 4e^{-} \end{pmatrix}$$

 $\rightarrow \cdot \quad C + 0^{2^{-}} \rightarrow C0 + 2e^{-}$
 $\cdot \quad C + 0_{2} \rightarrow C0_{2} + 4e^{-}$

高温状態で炭素と酸素がある

→一酸化炭素と二酸化炭素が生成する

水酸化ナトリウムの工業的製法1

陽イオン交換膜法

陽極室(極板:C)に NaCl 水溶液、陰極室(極板:Fe)に NaOH 水溶液を用いる 陽極室と陰極室は<mark>陽イオン交換膜</mark>で仕切る

→陽イオンのみ通すことができる

陰極: 2H2O +2e- → H2+20H-

陽極: 20 → 0 へ → 20-

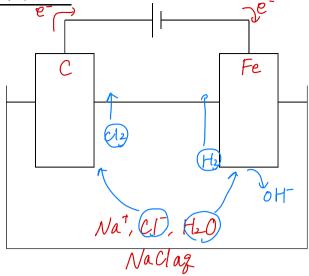
陽極で Cl⁻が消費されることにより、陽極室は⊕が多くなる

→Na+が陽イオン交換膜を通って、陰極室へ

陰極で OH-が生成することにより、陰極室は⊖が多くなる

- →OH-は陽イオン交換膜を通ることができない
- →陽極室から入ってくる Na+により、電気的に中性になる

陽極では Cl^- が消費され、 Na^+ が陰極室へ移動するので、(\sqrt{VaClag}) を供給するとよい陰極では H_2O が消費されるので、(H_2O) を供給し、反応後に増えた(\sqrt{VaClag}) を排出する。


最終的にこの電気分解では、(Cl)、(H_2)、(NaOHag) が得られる

水酸化ナトリウムの工業的製法2

単純な NaCl 水溶液を電気分解した場合 極板は先ほどと同じく、陽極板には炭素 C、 陰極板には鉄 Fe を用いる

陽極:2Cl→ Cl2 + 2e-

陰極: 2 H2O + 2e → H2+20H-

工業的製法と同じく

塩素 Cl_2 、水素 H_2 、水酸化ナトリウム NaOH が生成する

【問題点】

発生した塩素 Cl2が水 H2O にわずかに溶ける

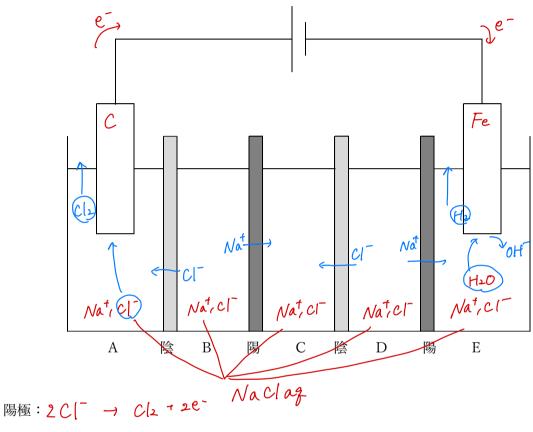
生成した塩化水素 HCI、次亜塩素酸 HCIO ともに酸性

→生成した NaOH と中和

$$HCl + NaOH \rightarrow NaCl + H_2O$$

 $HClO + NaOH \rightarrow NaClO + H_2O$

これらの反応を合わせると $Cl_2+H_2O+2NaOH \rightarrow NaCl+NaClO+2H_2O$ $Cl_2+2NaOH \rightarrow NaCl+NaClO+H_2O$


- ・生成した NaOH が中和反応に使われてしまって取り出せない
- ・NaCl の電気分解をしたのに、最終的に NaCl ができてしまう
- * 次亜塩素酸 HCIO / 次亜塩素酸ナトリウム NaCIO 殺菌・漂白作用が強い
- →消毒液に使われる

C|・電気陰性度が大きい=電子を引き付ける強さが強い | 電気を数:て1 = 電子が不足 一電子を奪いやすい

食塩の工業的製法

イオン交換膜法

陽極板には炭素 C、陰極板には鉄 Fe を用いて、陽極室から順に<mark>陰イオン交換膜、陽イオン交換</mark> 膜を交互に仕切り、A~E室にはNaCl水溶液を入れておく

陰極; 2H2O + 2e⁻ → H2 + 20H⁻

A 室では Cl^- が消費される $\rightarrow \ominus$ が減る $\rightarrow B$ 室から Cl^- が供給される

- → B室からC室へNa+が移動する → D室からC室へCl-が移動する
- → D室からE室へNa⁺が移動する

この電気分解のメリット

A室 : Cl 生成

B. D室: 淡水(U

C室 : Naclas の濃縮化

E室 : H、生成 (E室を NaOH 水溶液にしておくと、NaOH 水溶液も生成する)